Forward and reverse current transport mechanisms in tungsten carbide Schottky contacts on AlGaN/GaN heterostructures

In this paper, the forward and reverse current transport mechanisms in as-deposited and 400 °C annealed tungsten carbide (WC) Schottky contacts on AlGaN/GaN heterostructures have been studied. In particular, under forward bias, the WC/AlGaN Schottky contacts exhibited a deviation from the ideal ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-06, Vol.129 (23)
Hauptverfasser: Greco, G., Fiorenza, P., Spera, M., Giannazzo, F., Roccaforte, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the forward and reverse current transport mechanisms in as-deposited and 400 °C annealed tungsten carbide (WC) Schottky contacts on AlGaN/GaN heterostructures have been studied. In particular, under forward bias, the WC/AlGaN Schottky contacts exhibited a deviation from the ideal thermionic emission model due to the occurrence of a tunneling component of the current. From the temperature dependence of the ideality factor, a characteristic tunneling energy E00 in the range of 33–36 meV has been estimated. On the other hand, two different transport mechanisms have been identified under reverse bias. At low reverse bias (VR  2 V), the leakage current is dominated by a thermally activated process with an activation energy (0.27 eV) that is independent of the Schottky contact fabrication process. In this case, the temperature dependence of the leakage could be well described by a two-dimensional variable range hopping conduction associated with the presence of surface defects in the material.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0052079