Synthetic trees for enhanced solar evaporation and water harvesting

Solar steam generation from a porous evaporator is a promising approach for harvesting fresh water. Parasitic heat loss can be reduced by using a 3D evaporator that extends above the free surface; however, capillary rise constrains the height of such structures to a centimeter scale. Here, we demons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-06, Vol.118 (25)
Hauptverfasser: Eyegheleme, Ndidi L., Shi, Weiwei, De Koninck, Lance H., O'Brien, Julia L., Boreyko, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar steam generation from a porous evaporator is a promising approach for harvesting fresh water. Parasitic heat loss can be reduced by using a 3D evaporator that extends above the free surface; however, capillary rise constrains the height of such structures to a centimeter scale. Here, we demonstrate solar steam generation from a synthetic tree, which uses transpiration instead of capillary rise to pump water up insulating tubes of any desired height. A nanoporous ceramic disk coated with graphite was used for the synthetic leaf, which was attached to the upper end of a vertical array of plastic tubes. Using a solar still, it was observed that the synthetic tree harvested approximately three times more condensed water than an equivalent bulk reservoir.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0049904