Lu2O3: A promising ultrawide bandgap semiconductor for deep UV photodetector

Lutetium oxide (Lu2O3), an ultrawide semiconductor with an intrinsic bandgap of 5.5–5.9 eV, has been proposed as a potential material for a high- performance deep-ultraviolet (DUV) photodetector. Here, crystal oriented Lu2O3 films with bandgap of 5.6 eV are grown on GaN substrates through sputtering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-05, Vol.118 (21)
Hauptverfasser: Zhang, Dan, Lin, Wanmin, Lin, Zhuogeng, Jia, Lemin, Zheng, Wei, Huang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lutetium oxide (Lu2O3), an ultrawide semiconductor with an intrinsic bandgap of 5.5–5.9 eV, has been proposed as a potential material for a high- performance deep-ultraviolet (DUV) photodetector. Here, crystal oriented Lu2O3 films with bandgap of 5.6 eV are grown on GaN substrates through sputtering Lu2O3 target, based on which a graphene/Lu2O3/GaN DUV photovoltaic detector is constructed with its photoelectric performance being systematically studied. According to our research, under 0 V bias and 185 nm DUV irradiation, this device shows a high photoresponsivity of ∼13.7 μA/W, a short response time of ∼0.4 s, and a high light to dark current ratio of >600, which is about 1 order of magnitude higher than that of a currently reported DUV photovoltaic detector based on other films grown by magnetron sputtering. This research helps to broaden the range of candidate materials for DUV photodetectors and can work as a significant reference to develop the technology for device fabrication.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0048752