Spin-wave eigenmodes in direct-write 3D nanovolcanoes
Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity, and spintronics, because of geometry-, curvature-, and topology-induced phenomena. Here, we introduce Co–Fe nanovolcanoes—nanodisks overlaid by nanorings—as purpose-engineered...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-03, Vol.118 (13) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity, and spintronics, because of geometry-, curvature-, and topology-induced phenomena. Here, we introduce Co–Fe nanovolcanoes—nanodisks overlaid by nanorings—as purpose-engineered 3D architectures for nanomagnonics, fabricated by focused electron beam-induced deposition. We use both perpendicular spin-wave resonance measurements and micromagnetic simulations to demonstrate that the rings encircling the volcano craters harbor the highest-frequency eigenmodes, while the lower-frequency eigenmodes are concentrated within the volcano crater, due to the non-uniformity of the internal magnetic field. By varying the crater diameter, we demonstrate the deliberate tuning of higher-frequency eigenmodes without affecting the lowest-frequency mode. Thereby, the extension of 2D nanodisks into the third dimension allows one to engineer their lowest eigenfrequency by using 3D nanovolcanoes with 30% smaller footprints. The presented nanovolcanoes can be viewed as multi-mode microwave resonators and 3D building blocks for nanomagnonics. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0044325 |