Viscoelasticity of biomolecular condensates conforms to the Jeffreys model

Biomolecular condensates, largely by virtue of their material properties, are revolutionizing biology, and yet, the physical understanding of these properties is lagging. Here, I show that the viscoelasticity of condensates can be captured by a simple model, comprising a component where shear relaxa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-01, Vol.154 (4), p.041103-041103
1. Verfasser: Zhou, Huan-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomolecular condensates, largely by virtue of their material properties, are revolutionizing biology, and yet, the physical understanding of these properties is lagging. Here, I show that the viscoelasticity of condensates can be captured by a simple model, comprising a component where shear relaxation is an exponential function (with time constant τ1) and a component with nearly instantaneous shear relaxation (time constant τ0 → 0). Modulation of intermolecular interactions, e.g., by adding salt, can disparately affect the two components such that the τ1 component may dominate at low salt, whereas the τ0 component may dominate at high salt. Condensates have a tendency to fuse, with the dynamics accelerated by interfacial tension and impeded by viscosity. For fast-fusion condensates, shear relaxation on the τ1 timescale may become rate-limiting such that the fusion speed is no longer in direction proportion to the interfacial tension. These insights help narrow the gap in understanding between the biology and physics of biomolecular condensates.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0038916