Axion electrodynamics in topological materials
One of the intriguing properties characteristic to three-dimensional topological materials is the topological magnetoelectric phenomena arising from a topological term called the θ term. Such magnetoelectric phenomena are often termed the axion electrodynamics since the θ term has exactly the same f...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-04, Vol.129 (14) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the intriguing properties characteristic to three-dimensional topological materials is the topological magnetoelectric phenomena arising from a topological term called the
θ term. Such magnetoelectric phenomena are often termed the axion electrodynamics since the
θ term has exactly the same form as the action describing the coupling between a hypothetical elementary particle, axion, and a photon. The axion was proposed about 40 years ago to solve the so-called strong CP problem in quantum chromodynamics and is now considered a candidate for dark matter. In this Tutorial, we overview theoretical and experimental studies on the axion electrodynamics in three-dimensional topological materials. Starting from the topological magnetoelectric effect in three-dimensional time-reversal invariant topological insulators, we describe the basic properties of static and dynamical axion insulators whose realizations require magnetic orderings. We also discuss the electromagnetic responses of Weyl semimetals with a focus on the chiral anomaly. We extend the concept of the axion electrodynamics in condensed matter to topological superconductors, whose responses to external fields can be described by a gravitational topological term analogous to the
θ term. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0038804 |