High-performance polymer semiconductor-based ferroelectric transistor nonvolatile memory with a self-organized ferroelectric/dielectric gate insulator

Ferroelectric organic field-effect transistor nonvolatile memories (Fe-OFET-NVMs) offer attractive features for future memory applications, such as flexible and wearable electronics. Polymer semiconductor-based top-gate Fe-OFET-NVMs possess natural advantages in the device structure and processing m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-01, Vol.118 (3)
Hauptverfasser: Xu, Meili, Zhang, Xindong, Qi, Weihao, Li, Shizhang, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroelectric organic field-effect transistor nonvolatile memories (Fe-OFET-NVMs) offer attractive features for future memory applications, such as flexible and wearable electronics. Polymer semiconductor-based top-gate Fe-OFET-NVMs possess natural advantages in the device structure and processing manufacturing, compared to small-molecule semiconductor-based bottom-gate Fe-OFET-NVMs. However, their performances, such as mobility and operating voltages, should be further improved to be comparable to those of the latter. In this Letter, we develop a route to achieve high-performance top-gate Fe-OFET-NVMs, by employing a polymer semiconductor channel and self-organized ferroelectric/dielectric gate insulators, which were processed by a solution spin-coating technique. The optimal Fe-OFET-NVM exhibits a high mobility of 1.96 cm2/V s on average, a reliable endurance over 400 cycles, a stable retention capability over 6 × 104 s, and a life more than one year. Furthermore, the operating voltage of the Fe-OFET-NVM is reduced to ±20 V by scaling down the thickness of the ferroelectric/dielectric gate insulator. The whole performances of our memories are comparable to or better than those of the previous Fe-OFET-NVMs.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0035321