Development of an experimental facility for the study of microparticle initiated radio frequency vacuum breakdown

An ongoing objective in the ion cyclotron range of frequencies (ICRF) systems is the improvement of power coupling to the plasma. During the last decade, this goal has been mainly pursued through the study of the coupling resistance, either by optimizing the antenna layout or by tailoring the scrape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-01, Vol.92 (1), p.013508-013508
Hauptverfasser: Casagrande, R., Faugel, H., Fischer, F., Fünfgelder, H., Riedl, F., Siegl, G., Bettini, P., Noterdaeme, J.-M., Crombé, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ongoing objective in the ion cyclotron range of frequencies (ICRF) systems is the improvement of power coupling to the plasma. During the last decade, this goal has been mainly pursued through the study of the coupling resistance, either by optimizing the antenna layout or by tailoring the scrape-off layer profile with gas puffing. Another approach is to increase the voltage handling capability of the ICRF system, limited by breakdown in the launchers or in the transmission lines. This paper describes the design of the ICRF Breakdown EXperiment (IBEX), a device to investigate fundamental aspects of radio frequency arcs under ICRF-relevant conditions. IBEX can achieve a peak voltage of 48 kV at 54 MHz with a 5 kW input power.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0034559