Estimating entropy rate from censored symbolic time series: A test for time-irreversibility
In this work, we introduce a method for estimating the entropy rate and the entropy production rate from a finite symbolic time series. From the point of view of statistics, estimating entropy from a finite series can be interpreted as a problem of estimating parameters of a distribution with a cens...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2021-01, Vol.31 (1), p.013131-013131 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we introduce a method for estimating the entropy rate and the entropy production rate from a finite symbolic time series. From the point of view of statistics, estimating entropy from a finite series can be interpreted as a problem of estimating parameters of a distribution with a censored or truncated sample. We use this point of view to give estimations of the entropy rate and the entropy production rate, assuming that they are parameters of a (limit) distribution. The last statement is actually a consequence of the fact that the distribution of estimations obtained from recurrence-time statistics satisfies the central limit theorem. We test our method using a time series coming from Markov chain models, discrete-time chaotic maps, and a real DNA sequence from the human genome. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0032515 |