Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3
We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-11, Vol.128 (19) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Schranz, W. Tröster, A. Rychetsky, I. |
description | We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in
SrTiO
3 and
PbZrO
3. For
SrTiO
3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling
b
i
j
k
l
P
i
P
j
ϕ
k
ϕ
l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form
W
i
j
k
l
P
i
ϕ
k
∂
ϕ
l
∂
x
j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For
PbZrO
3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in
SrTiO
3, there exists no Lifshitz invariant
W
i
j
k
l
P
i
η
k
∂
η
l
∂
x
j for the order parameter
η
i
(
i
=
1
,
…
,
12
) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO
3 is driven by higher order interactions between polarization
P
i, order parameter
η
k, and order parameter gradients
∂
η
l
∂
x
j. |
doi_str_mv | 10.1063/5.0030038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0030038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461094440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yTZbJOjFL-gUMF68RKy2cSm1M2aZBX99W5bUUQQBgKTZ2bgRegYwwhDSc_ZCID2xXfQAAMX-Zgx2EUDAIJzLsZiHx3EuATAmFMxQGbimxRc1SXnm5gln7V-pYL7UOtGppr6dyO-uaQXrnnK3Po3uXahoskq3zV1r0zMvM3uw9zN6Gb4rnoMM3qI9qxaRXP09Q7Rw9XlfHKTT2fXt5OLaa4p4ym3FTDBbalsyQpOiCa6UDWmTAltNNTKKDUmRJRGW1spgXlFhSZMaUGErQwdopPt3jb4l87EJJe-C01_UpKixCCKooBenW6VDj7GYKxsg3tW4V1ikOsUJZNfKfb2bGujdmkTwTd-9eEHyra2_-G_mz8BFQOCEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461094440</pqid></control><display><type>article</type><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schranz, W. ; Tröster, A. ; Rychetsky, I.</creator><creatorcontrib>Schranz, W. ; Tröster, A. ; Rychetsky, I.</creatorcontrib><description>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in
SrTiO
3 and
PbZrO
3. For
SrTiO
3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling
b
i
j
k
l
P
i
P
j
ϕ
k
ϕ
l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form
W
i
j
k
l
P
i
ϕ
k
∂
ϕ
l
∂
x
j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For
PbZrO
3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in
SrTiO
3, there exists no Lifshitz invariant
W
i
j
k
l
P
i
η
k
∂
η
l
∂
x
j for the order parameter
η
i
(
i
=
1
,
…
,
12
) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO
3 is driven by higher order interactions between polarization
P
i, order parameter
η
k, and order parameter gradients
∂
η
l
∂
x
j.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0030038</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiphase boundaries ; Applied physics ; Electric fields ; Free energy ; Order parameters ; Polarity ; Polarization ; Strontium titanates</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (19)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</citedby><cites>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</cites><orcidid>0000-0002-9842-3532 ; 0000-0001-6338-7554 ; 0000-0002-7997-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0030038$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Schranz, W.</creatorcontrib><creatorcontrib>Tröster, A.</creatorcontrib><creatorcontrib>Rychetsky, I.</creatorcontrib><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><title>Journal of applied physics</title><description>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in
SrTiO
3 and
PbZrO
3. For
SrTiO
3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling
b
i
j
k
l
P
i
P
j
ϕ
k
ϕ
l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form
W
i
j
k
l
P
i
ϕ
k
∂
ϕ
l
∂
x
j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For
PbZrO
3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in
SrTiO
3, there exists no Lifshitz invariant
W
i
j
k
l
P
i
η
k
∂
η
l
∂
x
j for the order parameter
η
i
(
i
=
1
,
…
,
12
) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO
3 is driven by higher order interactions between polarization
P
i, order parameter
η
k, and order parameter gradients
∂
η
l
∂
x
j.</description><subject>Antiphase boundaries</subject><subject>Applied physics</subject><subject>Electric fields</subject><subject>Free energy</subject><subject>Order parameters</subject><subject>Polarity</subject><subject>Polarization</subject><subject>Strontium titanates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yTZbJOjFL-gUMF68RKy2cSm1M2aZBX99W5bUUQQBgKTZ2bgRegYwwhDSc_ZCID2xXfQAAMX-Zgx2EUDAIJzLsZiHx3EuATAmFMxQGbimxRc1SXnm5gln7V-pYL7UOtGppr6dyO-uaQXrnnK3Po3uXahoskq3zV1r0zMvM3uw9zN6Gb4rnoMM3qI9qxaRXP09Q7Rw9XlfHKTT2fXt5OLaa4p4ym3FTDBbalsyQpOiCa6UDWmTAltNNTKKDUmRJRGW1spgXlFhSZMaUGErQwdopPt3jb4l87EJJe-C01_UpKixCCKooBenW6VDj7GYKxsg3tW4V1ikOsUJZNfKfb2bGujdmkTwTd-9eEHyra2_-G_mz8BFQOCEg</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Schranz, W.</creator><creator>Tröster, A.</creator><creator>Rychetsky, I.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9842-3532</orcidid><orcidid>https://orcid.org/0000-0001-6338-7554</orcidid><orcidid>https://orcid.org/0000-0002-7997-542X</orcidid></search><sort><creationdate>20201121</creationdate><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><author>Schranz, W. ; Tröster, A. ; Rychetsky, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiphase boundaries</topic><topic>Applied physics</topic><topic>Electric fields</topic><topic>Free energy</topic><topic>Order parameters</topic><topic>Polarity</topic><topic>Polarization</topic><topic>Strontium titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schranz, W.</creatorcontrib><creatorcontrib>Tröster, A.</creatorcontrib><creatorcontrib>Rychetsky, I.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schranz, W.</au><au>Tröster, A.</au><au>Rychetsky, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>128</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in
SrTiO
3 and
PbZrO
3. For
SrTiO
3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling
b
i
j
k
l
P
i
P
j
ϕ
k
ϕ
l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form
W
i
j
k
l
P
i
ϕ
k
∂
ϕ
l
∂
x
j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For
PbZrO
3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in
SrTiO
3, there exists no Lifshitz invariant
W
i
j
k
l
P
i
η
k
∂
η
l
∂
x
j for the order parameter
η
i
(
i
=
1
,
…
,
12
) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO
3 is driven by higher order interactions between polarization
P
i, order parameter
η
k, and order parameter gradients
∂
η
l
∂
x
j.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0030038</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9842-3532</orcidid><orcidid>https://orcid.org/0000-0001-6338-7554</orcidid><orcidid>https://orcid.org/0000-0002-7997-542X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-11, Vol.128 (19) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0030038 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Antiphase boundaries Applied physics Electric fields Free energy Order parameters Polarity Polarization Strontium titanates |
title | Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20to%20polarization%20and%20polarization%20switching%20in%20antiphase%20boundaries%20of%20SrTiO3%20and%20PbZrO3&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schranz,%20W.&rft.date=2020-11-21&rft.volume=128&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0030038&rft_dat=%3Cproquest_cross%3E2461094440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461094440&rft_id=info:pmid/&rfr_iscdi=true |