Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3

We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-11, Vol.128 (19)
Hauptverfasser: Schranz, W., Tröster, A., Rychetsky, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 128
creator Schranz, W.
Tröster, A.
Rychetsky, I.
description We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j k l P i P j ϕ k ϕ l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form W i j k l P i ϕ k ∂ ϕ l ∂ x j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For PbZrO 3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in SrTiO 3, there exists no Lifshitz invariant W i j k l P i η k ∂ η l ∂ x j for the order parameter η i ( i = 1 , … , 12 ) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO 3 is driven by higher order interactions between polarization P i, order parameter η k, and order parameter gradients ∂ η l ∂ x j.
doi_str_mv 10.1063/5.0030038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0030038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461094440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yTZbJOjFL-gUMF68RKy2cSm1M2aZBX99W5bUUQQBgKTZ2bgRegYwwhDSc_ZCID2xXfQAAMX-Zgx2EUDAIJzLsZiHx3EuATAmFMxQGbimxRc1SXnm5gln7V-pYL7UOtGppr6dyO-uaQXrnnK3Po3uXahoskq3zV1r0zMvM3uw9zN6Gb4rnoMM3qI9qxaRXP09Q7Rw9XlfHKTT2fXt5OLaa4p4ym3FTDBbalsyQpOiCa6UDWmTAltNNTKKDUmRJRGW1spgXlFhSZMaUGErQwdopPt3jb4l87EJJe-C01_UpKixCCKooBenW6VDj7GYKxsg3tW4V1ikOsUJZNfKfb2bGujdmkTwTd-9eEHyra2_-G_mz8BFQOCEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461094440</pqid></control><display><type>article</type><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schranz, W. ; Tröster, A. ; Rychetsky, I.</creator><creatorcontrib>Schranz, W. ; Tröster, A. ; Rychetsky, I.</creatorcontrib><description>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j k l P i P j ϕ k ϕ l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form W i j k l P i ϕ k ∂ ϕ l ∂ x j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For PbZrO 3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in SrTiO 3, there exists no Lifshitz invariant W i j k l P i η k ∂ η l ∂ x j for the order parameter η i ( i = 1 , … , 12 ) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO 3 is driven by higher order interactions between polarization P i, order parameter η k, and order parameter gradients ∂ η l ∂ x j.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0030038</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiphase boundaries ; Applied physics ; Electric fields ; Free energy ; Order parameters ; Polarity ; Polarization ; Strontium titanates</subject><ispartof>Journal of applied physics, 2020-11, Vol.128 (19)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</citedby><cites>FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</cites><orcidid>0000-0002-9842-3532 ; 0000-0001-6338-7554 ; 0000-0002-7997-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0030038$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Schranz, W.</creatorcontrib><creatorcontrib>Tröster, A.</creatorcontrib><creatorcontrib>Rychetsky, I.</creatorcontrib><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><title>Journal of applied physics</title><description>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j k l P i P j ϕ k ϕ l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form W i j k l P i ϕ k ∂ ϕ l ∂ x j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For PbZrO 3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in SrTiO 3, there exists no Lifshitz invariant W i j k l P i η k ∂ η l ∂ x j for the order parameter η i ( i = 1 , … , 12 ) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO 3 is driven by higher order interactions between polarization P i, order parameter η k, and order parameter gradients ∂ η l ∂ x j.</description><subject>Antiphase boundaries</subject><subject>Applied physics</subject><subject>Electric fields</subject><subject>Free energy</subject><subject>Order parameters</subject><subject>Polarity</subject><subject>Polarization</subject><subject>Strontium titanates</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yTZbJOjFL-gUMF68RKy2cSm1M2aZBX99W5bUUQQBgKTZ2bgRegYwwhDSc_ZCID2xXfQAAMX-Zgx2EUDAIJzLsZiHx3EuATAmFMxQGbimxRc1SXnm5gln7V-pYL7UOtGppr6dyO-uaQXrnnK3Po3uXahoskq3zV1r0zMvM3uw9zN6Gb4rnoMM3qI9qxaRXP09Q7Rw9XlfHKTT2fXt5OLaa4p4ym3FTDBbalsyQpOiCa6UDWmTAltNNTKKDUmRJRGW1spgXlFhSZMaUGErQwdopPt3jb4l87EJJe-C01_UpKixCCKooBenW6VDj7GYKxsg3tW4V1ikOsUJZNfKfb2bGujdmkTwTd-9eEHyra2_-G_mz8BFQOCEg</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Schranz, W.</creator><creator>Tröster, A.</creator><creator>Rychetsky, I.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9842-3532</orcidid><orcidid>https://orcid.org/0000-0001-6338-7554</orcidid><orcidid>https://orcid.org/0000-0002-7997-542X</orcidid></search><sort><creationdate>20201121</creationdate><title>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</title><author>Schranz, W. ; Tröster, A. ; Rychetsky, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-fb0598f6af654822c2c4ad135a9cec0daeaa72296ecffba918b39c25ac929fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiphase boundaries</topic><topic>Applied physics</topic><topic>Electric fields</topic><topic>Free energy</topic><topic>Order parameters</topic><topic>Polarity</topic><topic>Polarization</topic><topic>Strontium titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schranz, W.</creatorcontrib><creatorcontrib>Tröster, A.</creatorcontrib><creatorcontrib>Rychetsky, I.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schranz, W.</au><au>Tröster, A.</au><au>Rychetsky, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3</atitle><jtitle>Journal of applied physics</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>128</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j k l P i P j ϕ k ϕ l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form W i j k l P i ϕ k ∂ ϕ l ∂ x j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For PbZrO 3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in SrTiO 3, there exists no Lifshitz invariant W i j k l P i η k ∂ η l ∂ x j for the order parameter η i ( i = 1 , … , 12 ) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO 3 is driven by higher order interactions between polarization P i, order parameter η k, and order parameter gradients ∂ η l ∂ x j.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0030038</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9842-3532</orcidid><orcidid>https://orcid.org/0000-0001-6338-7554</orcidid><orcidid>https://orcid.org/0000-0002-7997-542X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-11, Vol.128 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0030038
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antiphase boundaries
Applied physics
Electric fields
Free energy
Order parameters
Polarity
Polarization
Strontium titanates
title Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contributions%20to%20polarization%20and%20polarization%20switching%20in%20antiphase%20boundaries%20of%20SrTiO3%20and%20PbZrO3&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schranz,%20W.&rft.date=2020-11-21&rft.volume=128&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0030038&rft_dat=%3Cproquest_cross%3E2461094440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461094440&rft_id=info:pmid/&rfr_iscdi=true