Contributions to polarization and polarization switching in antiphase boundaries of SrTiO3 and PbZrO3

We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-11, Vol.128 (19)
Hauptverfasser: Schranz, W., Tröster, A., Rychetsky, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a recently developed method—based on layer group analysis combined with the Landau theory—to investigate the polar properties of antiphase boundaries (APBs) in SrTiO 3 and PbZrO 3. For SrTiO 3, we find that, in addition to the biquadratic, Houchmandazeh-Laizerowicz-Salje (HLS) coupling b i j k l P i P j ϕ k ϕ l in the Landau-Ginzburg free energy expansion, additional rotopolar terms of the form W i j k l P i ϕ k ∂ ϕ l ∂ x j contribute considerably to the polarization of antiphase boundaries in these materials. The rotopolar terms can be split into a symmetric flexoelectric part and an antisymmetric one. The antisymmetric Lifshitz term leads to a macroscopic polarization of APBs, which can be switched by application of an external electric field. For PbZrO 3, the observed polarization profiles [Wei et al., Mater. Res. Bull. 62, 101 (2015)] are fully compatible with the symmetries of the corresponding layer groups. Unlike in SrTiO 3, there exists no Lifshitz invariant W i j k l P i η k ∂ η l ∂ x j for the order parameter η i ( i = 1 , … , 12 ) describing the displacements of lead atoms. However, a detailed group theoretical treatment indicates that the polarity of APBs in PbZrO 3 is driven by higher order interactions between polarization P i, order parameter η k, and order parameter gradients ∂ η l ∂ x j.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0030038