Normalized ground state solutions for Kirchhoff type systems

We consider the existence of ground state solutions for nonlinear Kirchhoff type systems in the whole space RN (2 ≤ N ≤ 4) with prescribed normalization. Two cases are studied: one is L2-supercritical and the other is mixed. In the first case, assuming that the coupling coefficient is big enough, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-03, Vol.62 (3)
1. Verfasser: Yang, Zuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the existence of ground state solutions for nonlinear Kirchhoff type systems in the whole space RN (2 ≤ N ≤ 4) with prescribed normalization. Two cases are studied: one is L2-supercritical and the other is mixed. In the first case, assuming that the coupling coefficient is big enough, we prove the existence of a ground state solution via minimax methods. In the second case, assuming that the coupling coefficient is sufficiently small, we show the existence of a local minimizer, which is, of course, also a ground state solution.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0028551