Instanton theory of tunneling in molecules with asymmetric isotopic substitutions
We consider quantum tunneling in asymmetric double-well systems for which the local minima in the two wells have the same energy, but the frequencies differ slightly. In a molecular context, this situation can arise if the symmetry is broken by isotopic substitutions. We derive a generalization of i...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-09, Vol.153 (9), p.094101-094101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider quantum tunneling in asymmetric double-well systems for which the local minima in the two wells have the same energy, but the frequencies differ slightly. In a molecular context, this situation can arise if the symmetry is broken by isotopic substitutions. We derive a generalization of instanton theory for these asymmetric systems, leading to a semiclassical expression for the tunneling matrix element and hence the energy-level splitting. We benchmark the method using a set of one- and two-dimensional models, for which the results compare favorably with numerically exact quantum calculations. Using the ring-polymer instanton approach, we apply the method to compute the level splittings in various isotopomers of malonaldehyde in full dimensionality and analyze the relative contributions from the zero-point energy difference and tunneling effects. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0021831 |