Influence of external driving on decays in the geometry of the LiCN isomerization

The framework of transition state theory relies on the determination of a geometric structure identifying reactivity. It replaces the laborious exercise of following many trajectories for a long time to provide chemical reaction rates and pathways. In this paper, recent advances in constructing this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-08, Vol.153 (8), p.084115-084115
Hauptverfasser: Feldmaier, Matthias, Reiff, Johannes, Benito, Rosa M., Borondo, Florentino, Main, Jörg, Hernandez, Rigoberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The framework of transition state theory relies on the determination of a geometric structure identifying reactivity. It replaces the laborious exercise of following many trajectories for a long time to provide chemical reaction rates and pathways. In this paper, recent advances in constructing this geometry even in time-dependent systems are applied to the LiCN ⇌ LiNC isomerization reaction driven by an external field. We obtain decay rates of the reactant population close to the transition state by exploiting local properties of the dynamics of trajectories in and close to it. We find that the external driving has a large influence on these decay rates when compared to the non-driven isomerization reaction. This, in turn, provides renewed evidence for the possibility of controlling chemical reactions, like this one, through external time-dependent fields.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0015509