Rational limit cycles on generalized Bernouilli polynomial equations
We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-03, Vol.62 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles. We also show that the addressed problem can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then, we approach these equations by applying several tools; in particular, some developed to study extending Fermat problems for polynomial equations. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0015230 |