Optical time-frequency transfer across a free-space, three-node network
We demonstrate frequency-comb-based optical two-way time-frequency transfer across a three-node clock network. A fielded, bidirectional relay node connects laboratory-based master and end nodes, allowing the network to span 28 km of turbulent outdoor air while keeping optical transmit powers below 5...
Gespeichert in:
Veröffentlicht in: | APL photonics 2020-07, Vol.5 (7), p.076113-076113-8 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate frequency-comb-based optical two-way time-frequency transfer across a three-node clock network. A fielded, bidirectional relay node connects laboratory-based master and end nodes, allowing the network to span 28 km of turbulent outdoor air while keeping optical transmit powers below 5 mW. Despite the comparatively high instability of the free-running local oscillator at the relay node, the network transfers frequency with fractional precision below 10−18 at averaging times above 200 s and transfers time with a time deviation below 1 fs at averaging times between 1 s and 1 h. The successful operation of this network represents a promising step toward the operation of future free-space networks of optical atomic clocks. |
---|---|
ISSN: | 2378-0967 2378-0967 |
DOI: | 10.1063/5.0010704 |