Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing

This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-07, Vol.32 (7)
Hauptverfasser: Kokkinakis, Ioannis W., Drikakis, Dimitris, Youngs, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Kokkinakis, Ioannis W.
Drikakis, Dimitris
Youngs, David L.
description This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.
doi_str_mv 10.1063/5.0010559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0010559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419531329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</originalsourceid><addsrcrecordid>eNp90L1OwzAQwHELgUQpDLxBJCaQUuw4duIRVXxJrZBQmSPHPlOXJG5tB-jGO_CGPAkt7cx0N_x0J_0ROid4RDCn12yEMcGMiQM0ILgUacE5P9zuBU45p-QYnYSwwBhTkfEBms4-XAqrXkbrukR2Omn7JtrUNL3VSex93TfQKUhap6EJiXE-ebZqHts1-J-v7ymE-Zt7T1r7abvXU3RkZBPgbD-H6OXudjZ-SCdP94_jm0mqaFbEFKQQCkxZ5NLkpamF1kRzJmleCBC05gxyanQtMyaoJlCosgStaF6bTBMKdIgudneX3q16CLFauN53m5dVlhPBKKGZ2KjLnVLeheDBVEtvW-nXFcHVtlbFqn2tjb3a2aBs_IvxD_4FLIhrrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419531329</pqid></control><display><type>article</type><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</creator><creatorcontrib>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</creatorcontrib><description>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0010559</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Fluid dynamics ; Fluid flow ; Kinetic energy ; Large eddy simulation ; Model accuracy ; Physics ; Realizability ; Reynolds stress ; Richtmeyer-Meshkov instability ; Self-similarity ; Sulfur hexafluoride ; Tensors ; Turbulence models ; Turbulent mixing ; Two fluid models</subject><ispartof>Physics of fluids (1994), 2020-07, Vol.32 (7)</ispartof><rights>Crown</rights><rights>2020Crown</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</citedby><cites>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</cites><orcidid>0000-0002-3300-7669 ; 0000-0001-9694-3764 ; 0000-0003-2853-5341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Kokkinakis, Ioannis W.</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><creatorcontrib>Youngs, David L.</creatorcontrib><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><title>Physics of fluids (1994)</title><description>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Model accuracy</subject><subject>Physics</subject><subject>Realizability</subject><subject>Reynolds stress</subject><subject>Richtmeyer-Meshkov instability</subject><subject>Self-similarity</subject><subject>Sulfur hexafluoride</subject><subject>Tensors</subject><subject>Turbulence models</subject><subject>Turbulent mixing</subject><subject>Two fluid models</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQwHELgUQpDLxBJCaQUuw4duIRVXxJrZBQmSPHPlOXJG5tB-jGO_CGPAkt7cx0N_x0J_0ROid4RDCn12yEMcGMiQM0ILgUacE5P9zuBU45p-QYnYSwwBhTkfEBms4-XAqrXkbrukR2Omn7JtrUNL3VSex93TfQKUhap6EJiXE-ebZqHts1-J-v7ymE-Zt7T1r7abvXU3RkZBPgbD-H6OXudjZ-SCdP94_jm0mqaFbEFKQQCkxZ5NLkpamF1kRzJmleCBC05gxyanQtMyaoJlCosgStaF6bTBMKdIgudneX3q16CLFauN53m5dVlhPBKKGZ2KjLnVLeheDBVEtvW-nXFcHVtlbFqn2tjb3a2aBs_IvxD_4FLIhrrQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kokkinakis, Ioannis W.</creator><creator>Drikakis, Dimitris</creator><creator>Youngs, David L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3300-7669</orcidid><orcidid>https://orcid.org/0000-0001-9694-3764</orcidid><orcidid>https://orcid.org/0000-0003-2853-5341</orcidid></search><sort><creationdate>20200701</creationdate><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><author>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Model accuracy</topic><topic>Physics</topic><topic>Realizability</topic><topic>Reynolds stress</topic><topic>Richtmeyer-Meshkov instability</topic><topic>Self-similarity</topic><topic>Sulfur hexafluoride</topic><topic>Tensors</topic><topic>Turbulence models</topic><topic>Turbulent mixing</topic><topic>Two fluid models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokkinakis, Ioannis W.</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><creatorcontrib>Youngs, David L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokkinakis, Ioannis W.</au><au>Drikakis, Dimitris</au><au>Youngs, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010559</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3300-7669</orcidid><orcidid>https://orcid.org/0000-0001-9694-3764</orcidid><orcidid>https://orcid.org/0000-0003-2853-5341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-07, Vol.32 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0010559
source AIP Journals Complete; Alma/SFX Local Collection
subjects Accuracy
Aerodynamics
Computational fluid dynamics
Computer simulation
Fluid dynamics
Fluid flow
Kinetic energy
Large eddy simulation
Model accuracy
Physics
Realizability
Reynolds stress
Richtmeyer-Meshkov instability
Self-similarity
Sulfur hexafluoride
Tensors
Turbulence models
Turbulent mixing
Two fluid models
title Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-equation%20and%20multi-fluid%20turbulence%20models%20for%20Richtmyer%E2%80%93Meshkov%20mixing&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kokkinakis,%20Ioannis%20W.&rft.date=2020-07-01&rft.volume=32&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0010559&rft_dat=%3Cproquest_cross%3E2419531329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419531329&rft_id=info:pmid/&rfr_iscdi=true