Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing
This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by impl...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-07, Vol.32 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Kokkinakis, Ioannis W. Drikakis, Dimitris Youngs, David L. |
description | This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive. |
doi_str_mv | 10.1063/5.0010559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0010559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419531329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</originalsourceid><addsrcrecordid>eNp90L1OwzAQwHELgUQpDLxBJCaQUuw4duIRVXxJrZBQmSPHPlOXJG5tB-jGO_CGPAkt7cx0N_x0J_0ROid4RDCn12yEMcGMiQM0ILgUacE5P9zuBU45p-QYnYSwwBhTkfEBms4-XAqrXkbrukR2Omn7JtrUNL3VSex93TfQKUhap6EJiXE-ebZqHts1-J-v7ymE-Zt7T1r7abvXU3RkZBPgbD-H6OXudjZ-SCdP94_jm0mqaFbEFKQQCkxZ5NLkpamF1kRzJmleCBC05gxyanQtMyaoJlCosgStaF6bTBMKdIgudneX3q16CLFauN53m5dVlhPBKKGZ2KjLnVLeheDBVEtvW-nXFcHVtlbFqn2tjb3a2aBs_IvxD_4FLIhrrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419531329</pqid></control><display><type>article</type><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</creator><creatorcontrib>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</creatorcontrib><description>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0010559</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Fluid dynamics ; Fluid flow ; Kinetic energy ; Large eddy simulation ; Model accuracy ; Physics ; Realizability ; Reynolds stress ; Richtmeyer-Meshkov instability ; Self-similarity ; Sulfur hexafluoride ; Tensors ; Turbulence models ; Turbulent mixing ; Two fluid models</subject><ispartof>Physics of fluids (1994), 2020-07, Vol.32 (7)</ispartof><rights>Crown</rights><rights>2020Crown</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</citedby><cites>FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</cites><orcidid>0000-0002-3300-7669 ; 0000-0001-9694-3764 ; 0000-0003-2853-5341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Kokkinakis, Ioannis W.</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><creatorcontrib>Youngs, David L.</creatorcontrib><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><title>Physics of fluids (1994)</title><description>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</description><subject>Accuracy</subject><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Model accuracy</subject><subject>Physics</subject><subject>Realizability</subject><subject>Reynolds stress</subject><subject>Richtmeyer-Meshkov instability</subject><subject>Self-similarity</subject><subject>Sulfur hexafluoride</subject><subject>Tensors</subject><subject>Turbulence models</subject><subject>Turbulent mixing</subject><subject>Two fluid models</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQwHELgUQpDLxBJCaQUuw4duIRVXxJrZBQmSPHPlOXJG5tB-jGO_CGPAkt7cx0N_x0J_0ROid4RDCn12yEMcGMiQM0ILgUacE5P9zuBU45p-QYnYSwwBhTkfEBms4-XAqrXkbrukR2Omn7JtrUNL3VSex93TfQKUhap6EJiXE-ebZqHts1-J-v7ymE-Zt7T1r7abvXU3RkZBPgbD-H6OXudjZ-SCdP94_jm0mqaFbEFKQQCkxZ5NLkpamF1kRzJmleCBC05gxyanQtMyaoJlCosgStaF6bTBMKdIgudneX3q16CLFauN53m5dVlhPBKKGZ2KjLnVLeheDBVEtvW-nXFcHVtlbFqn2tjb3a2aBs_IvxD_4FLIhrrQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kokkinakis, Ioannis W.</creator><creator>Drikakis, Dimitris</creator><creator>Youngs, David L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3300-7669</orcidid><orcidid>https://orcid.org/0000-0001-9694-3764</orcidid><orcidid>https://orcid.org/0000-0003-2853-5341</orcidid></search><sort><creationdate>20200701</creationdate><title>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</title><author>Kokkinakis, Ioannis W. ; Drikakis, Dimitris ; Youngs, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ea99cef874af48fb9dd1d65a3479e93b65e43fdba2593d1e7c88edc34bf2d13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Model accuracy</topic><topic>Physics</topic><topic>Realizability</topic><topic>Reynolds stress</topic><topic>Richtmeyer-Meshkov instability</topic><topic>Self-similarity</topic><topic>Sulfur hexafluoride</topic><topic>Tensors</topic><topic>Turbulence models</topic><topic>Turbulent mixing</topic><topic>Two fluid models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokkinakis, Ioannis W.</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><creatorcontrib>Youngs, David L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokkinakis, Ioannis W.</au><au>Drikakis, Dimitris</au><au>Youngs, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010559</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3300-7669</orcidid><orcidid>https://orcid.org/0000-0001-9694-3764</orcidid><orcidid>https://orcid.org/0000-0003-2853-5341</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-07, Vol.32 (7) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0010559 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Accuracy Aerodynamics Computational fluid dynamics Computer simulation Fluid dynamics Fluid flow Kinetic energy Large eddy simulation Model accuracy Physics Realizability Reynolds stress Richtmeyer-Meshkov instability Self-similarity Sulfur hexafluoride Tensors Turbulence models Turbulent mixing Two fluid models |
title | Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-equation%20and%20multi-fluid%20turbulence%20models%20for%20Richtmyer%E2%80%93Meshkov%20mixing&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kokkinakis,%20Ioannis%20W.&rft.date=2020-07-01&rft.volume=32&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0010559&rft_dat=%3Cproquest_cross%3E2419531329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419531329&rft_id=info:pmid/&rfr_iscdi=true |