Two-equation and multi-fluid turbulence models for Richtmyer–Meshkov mixing
This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by impl...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-07, Vol.32 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer–Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier–Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models’ accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air–SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models’ accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh–Taylor and Richtmyer–Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0010559 |