On (ad)n(X2)k series of universal quantum dimensions
We present a universal, in Vogel’s sense, expression for the quantum dimension of the Cartan product of arbitrary powers of the adjoint and X2 representations of simple Lie algebras. The same formula mysteriously yields quantum dimensions of some other representations of the same Lie algebra for per...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-10, Vol.61 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 61 |
creator | Avetisyan, M. Y. Mkrtchyan, R. L. |
description | We present a universal, in Vogel’s sense, expression for the quantum dimension of the Cartan product of arbitrary powers of the adjoint and X2 representations of simple Lie algebras. The same formula mysteriously yields quantum dimensions of some other representations of the same Lie algebra for permuted universal parameters, provided linear resolvability of singularities is applied. We list these representations for the exceptional algebras and their stable versions for the classical algebras (when the rank of the classical algebra is sufficiently large with regard to the powers of representations). Universal formulas may have singularities at the points in Vogel’s plane, corresponding to some simple Lie algebras. We prove that our formula is linearly resolvable at all those singular points, i.e., yields finite answers when restricted either on the classical or the exceptional lines, and make a conjecture that these answers coincide with (quantum) dimensions of some irreducible representations. In a number of cases, particularly, in the case of so(8) algebra, which belongs both to the orthogonal and the exceptional lines, it is confirmed that both resolutions yield relevant answers. We note that an irreducible representation may have several universal formulas for its (quantum) dimension and discuss the impact of this phenomenon to the method presented by Cohen and de Man [C. R.Acad. Sci., Ser. 1 322(5), 427–432 (1996)] for derivation of universal formulas. |
doi_str_mv | 10.1063/5.0007028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0007028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448715667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172f-10785a8125ae3b08891da748051cec63aae37fe6d1733f7d699bfcec25e77e753</originalsourceid><addsrcrecordid>eNqd0E1Lw0AQBuBFFIzVg_8g4KUVUmf2O0cpfkGhFwVvyzbZhdRm0-4mBf-9kRa8exqYeZhhXkJuEeYIkj2IOQAooPqMZAi6LJQU-pxkAJQWlGt9Sa5S2gAgas4zwlchn9p6FqafdPaVJxcbl_LO50NoDi4mu833gw390OZ107qQmi6ka3Lh7Ta5m1OdkI_np_fFa7FcvbwtHpdFhYr6AkFpYTVSYR1bg9Yl1lZxDQIrV0lmx7byTtaoGPOqlmW59uOECqeUU4JNyN1x7y52-8Gl3my6IYbxpKGca4VCSjWq2VFVsUspOm92sWlt_DYI5jcUI8wplNHeH22qmt724zP_w4cu_kGzqz37Ae8dbYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448715667</pqid></control><display><type>article</type><title>On (ad)n(X2)k series of universal quantum dimensions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Avetisyan, M. Y. ; Mkrtchyan, R. L.</creator><creatorcontrib>Avetisyan, M. Y. ; Mkrtchyan, R. L.</creatorcontrib><description>We present a universal, in Vogel’s sense, expression for the quantum dimension of the Cartan product of arbitrary powers of the adjoint and X2 representations of simple Lie algebras. The same formula mysteriously yields quantum dimensions of some other representations of the same Lie algebra for permuted universal parameters, provided linear resolvability of singularities is applied. We list these representations for the exceptional algebras and their stable versions for the classical algebras (when the rank of the classical algebra is sufficiently large with regard to the powers of representations). Universal formulas may have singularities at the points in Vogel’s plane, corresponding to some simple Lie algebras. We prove that our formula is linearly resolvable at all those singular points, i.e., yields finite answers when restricted either on the classical or the exceptional lines, and make a conjecture that these answers coincide with (quantum) dimensions of some irreducible representations. In a number of cases, particularly, in the case of so(8) algebra, which belongs both to the orthogonal and the exceptional lines, it is confirmed that both resolutions yield relevant answers. We note that an irreducible representation may have several universal formulas for its (quantum) dimension and discuss the impact of this phenomenon to the method presented by Cohen and de Man [C. R.Acad. Sci., Ser. 1 322(5), 427–432 (1996)] for derivation of universal formulas.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0007028</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Lie groups ; Physics ; Representations ; Singularities</subject><ispartof>Journal of mathematical physics, 2020-10, Vol.61 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172f-10785a8125ae3b08891da748051cec63aae37fe6d1733f7d699bfcec25e77e753</citedby><cites>FETCH-LOGICAL-c172f-10785a8125ae3b08891da748051cec63aae37fe6d1733f7d699bfcec25e77e753</cites><orcidid>0000-0002-2060-2805 ; 0000-0002-7565-3722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0007028$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Avetisyan, M. Y.</creatorcontrib><creatorcontrib>Mkrtchyan, R. L.</creatorcontrib><title>On (ad)n(X2)k series of universal quantum dimensions</title><title>Journal of mathematical physics</title><description>We present a universal, in Vogel’s sense, expression for the quantum dimension of the Cartan product of arbitrary powers of the adjoint and X2 representations of simple Lie algebras. The same formula mysteriously yields quantum dimensions of some other representations of the same Lie algebra for permuted universal parameters, provided linear resolvability of singularities is applied. We list these representations for the exceptional algebras and their stable versions for the classical algebras (when the rank of the classical algebra is sufficiently large with regard to the powers of representations). Universal formulas may have singularities at the points in Vogel’s plane, corresponding to some simple Lie algebras. We prove that our formula is linearly resolvable at all those singular points, i.e., yields finite answers when restricted either on the classical or the exceptional lines, and make a conjecture that these answers coincide with (quantum) dimensions of some irreducible representations. In a number of cases, particularly, in the case of so(8) algebra, which belongs both to the orthogonal and the exceptional lines, it is confirmed that both resolutions yield relevant answers. We note that an irreducible representation may have several universal formulas for its (quantum) dimension and discuss the impact of this phenomenon to the method presented by Cohen and de Man [C. R.Acad. Sci., Ser. 1 322(5), 427–432 (1996)] for derivation of universal formulas.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Physics</subject><subject>Representations</subject><subject>Singularities</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1Lw0AQBuBFFIzVg_8g4KUVUmf2O0cpfkGhFwVvyzbZhdRm0-4mBf-9kRa8exqYeZhhXkJuEeYIkj2IOQAooPqMZAi6LJQU-pxkAJQWlGt9Sa5S2gAgas4zwlchn9p6FqafdPaVJxcbl_LO50NoDi4mu833gw390OZ107qQmi6ka3Lh7Ta5m1OdkI_np_fFa7FcvbwtHpdFhYr6AkFpYTVSYR1bg9Yl1lZxDQIrV0lmx7byTtaoGPOqlmW59uOECqeUU4JNyN1x7y52-8Gl3my6IYbxpKGca4VCSjWq2VFVsUspOm92sWlt_DYI5jcUI8wplNHeH22qmt724zP_w4cu_kGzqz37Ae8dbYw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Avetisyan, M. Y.</creator><creator>Mkrtchyan, R. L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2060-2805</orcidid><orcidid>https://orcid.org/0000-0002-7565-3722</orcidid></search><sort><creationdate>20201001</creationdate><title>On (ad)n(X2)k series of universal quantum dimensions</title><author>Avetisyan, M. Y. ; Mkrtchyan, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172f-10785a8125ae3b08891da748051cec63aae37fe6d1733f7d699bfcec25e77e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Physics</topic><topic>Representations</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avetisyan, M. Y.</creatorcontrib><creatorcontrib>Mkrtchyan, R. L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avetisyan, M. Y.</au><au>Mkrtchyan, R. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On (ad)n(X2)k series of universal quantum dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>61</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We present a universal, in Vogel’s sense, expression for the quantum dimension of the Cartan product of arbitrary powers of the adjoint and X2 representations of simple Lie algebras. The same formula mysteriously yields quantum dimensions of some other representations of the same Lie algebra for permuted universal parameters, provided linear resolvability of singularities is applied. We list these representations for the exceptional algebras and their stable versions for the classical algebras (when the rank of the classical algebra is sufficiently large with regard to the powers of representations). Universal formulas may have singularities at the points in Vogel’s plane, corresponding to some simple Lie algebras. We prove that our formula is linearly resolvable at all those singular points, i.e., yields finite answers when restricted either on the classical or the exceptional lines, and make a conjecture that these answers coincide with (quantum) dimensions of some irreducible representations. In a number of cases, particularly, in the case of so(8) algebra, which belongs both to the orthogonal and the exceptional lines, it is confirmed that both resolutions yield relevant answers. We note that an irreducible representation may have several universal formulas for its (quantum) dimension and discuss the impact of this phenomenon to the method presented by Cohen and de Man [C. R.Acad. Sci., Ser. 1 322(5), 427–432 (1996)] for derivation of universal formulas.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0007028</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2060-2805</orcidid><orcidid>https://orcid.org/0000-0002-7565-3722</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2020-10, Vol.61 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0007028 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Lie groups Physics Representations Singularities |
title | On (ad)n(X2)k series of universal quantum dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20(ad)n(X2)k%20series%20of%20universal%20quantum%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Avetisyan,%20M.%20Y.&rft.date=2020-10-01&rft.volume=61&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0007028&rft_dat=%3Cproquest_cross%3E2448715667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448715667&rft_id=info:pmid/&rfr_iscdi=true |