Reconstruction of effective potential from statistical analysis of dynamic trajectories

The broad incorporation of microscopic methods is yielding a wealth of information on the atomic and mesoscale dynamics of individual atoms, molecules, and particles on surfaces and in open volumes. Analysis of such data necessitates statistical frameworks to convert observed dynamic behaviors to ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-06, Vol.10 (6), p.065034-065034-6
Hauptverfasser: Yousefzadi Nobakht, A., Dyck, O., Lingerfelt, D. B., Bao, F., Ziatdinov, M., Maksov, A., Sumpter, B. G., Archibald, R., Jesse, S., Kalinin, S. V., Law, K. J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The broad incorporation of microscopic methods is yielding a wealth of information on the atomic and mesoscale dynamics of individual atoms, molecules, and particles on surfaces and in open volumes. Analysis of such data necessitates statistical frameworks to convert observed dynamic behaviors to effective properties of materials. Here, we develop a method for the stochastic reconstruction of effective local potentials solely from observed structural data collected from molecular dynamics simulations (i.e., data analogous to those obtained via atomically resolved microscopies). Using the silicon vacancy defect in graphene as a model, we apply the statistical framework presented herein to reconstruct the free energy landscape from the calculated atomic displacements. Evidence of consistency between the reconstructed local potential and the trajectory data from which it was produced is presented, along with a quantitative assessment of the uncertainty in the inferred parameters.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0006103