Quantum algorithmic randomness
Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz [J. Math. Phys. 60(9), 092201 (2019)]. We define a notion of quantum Solovay randomness, which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-02, Vol.62 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz [J. Math. Phys. 60(9), 092201 (2019)]. We define a notion of quantum Solovay randomness, which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-Löf absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. A quantum analog of the law of large numbers is shown to hold for quantum Schnorr random states. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0003351 |