Quantum algorithmic randomness

Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz [J. Math. Phys. 60(9), 092201 (2019)]. We define a notion of quantum Solovay randomness, which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-02, Vol.62 (2)
1. Verfasser: Bhojraj, Tejas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz [J. Math. Phys. 60(9), 092201 (2019)]. We define a notion of quantum Solovay randomness, which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-Löf absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. A quantum analog of the law of large numbers is shown to hold for quantum Schnorr random states.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0003351