Exciton–phonon polaritons in organic microcavities: Testing a simple ansatz for treating a large number of chromophores

Polaritons in an ensemble of permutationally symmetric chromophores confined to an optical microcavity are investigated numerically. The analysis is based on the Holstein–Tavis–Cummings Hamiltonian which accounts for the coupling between an electronic excitation on each chromophore and a single cavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-05, Vol.152 (20), p.204113-204113
1. Verfasser: Spano, Frank C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polaritons in an ensemble of permutationally symmetric chromophores confined to an optical microcavity are investigated numerically. The analysis is based on the Holstein–Tavis–Cummings Hamiltonian which accounts for the coupling between an electronic excitation on each chromophore and a single cavity mode, as well as the coupling between the electronic and nuclear degrees of freedom on each chromophore. A straightforward ensemble partitioning scheme is introduced, which, along with an intuitive ansatz, allows one to obtain accurate evaluations of the lowest-energy polaritons using a subset of collective states. The polaritons include all three degrees of freedom—electronic, vibronic, and photonic—and can therefore be described as exciton–phonon polaritons. Applications focus on the limiting regimes where the Rabi frequency is small or large compared to the nuclear relaxation energy subsequent to optical excitation, with relaxation occurring mainly along the vinyl stretching coordinate in conjugated organic chromophores. Comparisons are also made to the more conventional vibronic polariton approach, which does not take into account two-particle excitations and vibration–photon states.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0002164