Analytic approximations for the Fermi energy of an ideal Fermi gas
An important function in semiconductor-device analysis and transport theory is the widely tabulated Fermi-Dirac integral, ℱ (η) =2π−1/2ℱ∞0[exp(x−η)+1]−1f dx, f=x1/2, which relates, for example, the Fermi energy ηkT to the carrier density N=ℱN0 in a parabolic semiconductor band (N0=effective density...
Gespeichert in:
Veröffentlicht in: | Appl. Phys. Lett.; (United States) 1977-09, Vol.31 (5), p.354-356 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important function in semiconductor-device analysis and transport theory is the widely tabulated Fermi-Dirac integral, ℱ (η) =2π−1/2ℱ∞0[exp(x−η)+1]−1f dx, f=x1/2, which relates, for example, the Fermi energy ηkT to the carrier density N=ℱN0 in a parabolic semiconductor band (N0=effective density of states). We show that the classical or Boltzmann approximation to this integral (η=lnℱ, η≲−2) is extended to cover the Fermi-energy range of semiconductor lasers (η≲+2) by the expression η=lnℱ+2−3/2ℱ and by other simple differentiable approximations applicable to higher degeneracy (η≲7) or to nonparabolic bands (f≠x1/2). |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.89697 |