Revised Formulation for the Refractive Index of Water and Steam as a Function of Wavelength, Temperature and Density
Schiebener et al. published a formulation for the refractive index of water and steam in 1990 [J. Phys. Chem. Ref. Data 19, 677 (1990)]. It covered the ranges 0.2 to 2.5 μm in wavelength, −12 to 500 °C in temperature, and 0 to 1045 kg m −3 in density. The formulation was adopted by the International...
Gespeichert in:
Veröffentlicht in: | Journal of physical and chemical reference data 1998-07, Vol.27 (4), p.761-774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Schiebener et al. published a formulation for the refractive index of water and steam in 1990 [J. Phys. Chem. Ref. Data 19, 677 (1990)]. It covered the ranges 0.2 to 2.5 μm in wavelength, −12 to 500 °C in temperature, and 0 to 1045
kg m
−3
in density. The formulation was adopted by the International Association for the Properties of Water and Steam (IAPWS) in 1991. In the present article, the data, after conversion to ITS-90, have been refitted to the same functional form, but based on an improved equation of state for water adopted by IAPWS in 1995. The revised coefficients are reported, and some tabular material is provided. The revised refractive-index formulation was adopted by IAPWS in 1997 and is available as part of a National Institute of Standards and Technology Standard Reference Database. For most conditions, the revised formulation does not differ significantly from the previous one. A substantial improvement has been obtained in supercooled water at ambient pressure, where the previous formulation was defective. Special attention has been paid to the behavior of the refractive index in the near infrared, where strongly oscillating data were reported after the correlation of Schiebener et al. had appeared, leading to subsequent curtailing of the range of validity of the formulation. Newer results do not show these oscillations. They are compared with the revised formulation. |
---|---|
ISSN: | 0047-2689 1529-7845 |
DOI: | 10.1063/1.556029 |