Foliation of a dynamically homogeneous neutral manifold
It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1998-11, Vol.39 (11), p.6118-6124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6124 |
---|---|
container_issue | 11 |
container_start_page | 6118 |
container_title | Journal of mathematical physics |
container_volume | 39 |
creator | Blažić, Novica Bokan, Neda Rakić, Zoran |
description | It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69–79 (1950)]). |
doi_str_mv | 10.1063/1.532617 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5c1a9f367bd427ab8e9b4abb9ba427f5700e4ad26c368d18abc8d100551952593</originalsourceid><addsrcrecordid>eNp9j09LwzAchoMoWKfgR8hRD51JmjTJUYabwsCLnssv_7SSNqPphH57q5NdBE8vLzw88CB0TcmSkrq6o0tRsZrKE1RQonQpa6FOUUEIYyXjSp2ji5w_CKFUcV4guU6xhbFNPU4BA3ZTD11rIcYJv6cuvfnep33Gvd-PA0TcQd-GFN0lOgsQs7_63QV6XT-8rB7L7fPmaXW_LS3T1VgKS0GHqpbGcSbBKK8NB2O0gfkHIQnxHByrbVUrRxUYOw8hQlAtmNDVAt0cvHZIOQ8-NLuh7WCYGkqa7-CGNofgGb09oNm240_Skf1Mw5Frdi78x_7xfgFbgGNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Foliation of a dynamically homogeneous neutral manifold</title><source>AIP Digital Archive</source><creator>Blažić, Novica ; Bokan, Neda ; Rakić, Zoran</creator><creatorcontrib>Blažić, Novica ; Bokan, Neda ; Rakić, Zoran</creatorcontrib><description>It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69–79 (1950)]).</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532617</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1998-11, Vol.39 (11), p.6118-6124</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5c1a9f367bd427ab8e9b4abb9ba427f5700e4ad26c368d18abc8d100551952593</citedby><cites>FETCH-LOGICAL-c293t-5c1a9f367bd427ab8e9b4abb9ba427f5700e4ad26c368d18abc8d100551952593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532617$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Blažić, Novica</creatorcontrib><creatorcontrib>Bokan, Neda</creatorcontrib><creatorcontrib>Rakić, Zoran</creatorcontrib><title>Foliation of a dynamically homogeneous neutral manifold</title><title>Journal of mathematical physics</title><description>It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69–79 (1950)]).</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9j09LwzAchoMoWKfgR8hRD51JmjTJUYabwsCLnssv_7SSNqPphH57q5NdBE8vLzw88CB0TcmSkrq6o0tRsZrKE1RQonQpa6FOUUEIYyXjSp2ji5w_CKFUcV4guU6xhbFNPU4BA3ZTD11rIcYJv6cuvfnep33Gvd-PA0TcQd-GFN0lOgsQs7_63QV6XT-8rB7L7fPmaXW_LS3T1VgKS0GHqpbGcSbBKK8NB2O0gfkHIQnxHByrbVUrRxUYOw8hQlAtmNDVAt0cvHZIOQ8-NLuh7WCYGkqa7-CGNofgGb09oNm240_Skf1Mw5Frdi78x_7xfgFbgGNy</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Blažić, Novica</creator><creator>Bokan, Neda</creator><creator>Rakić, Zoran</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981101</creationdate><title>Foliation of a dynamically homogeneous neutral manifold</title><author>Blažić, Novica ; Bokan, Neda ; Rakić, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5c1a9f367bd427ab8e9b4abb9ba427f5700e4ad26c368d18abc8d100551952593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blažić, Novica</creatorcontrib><creatorcontrib>Bokan, Neda</creatorcontrib><creatorcontrib>Rakić, Zoran</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blažić, Novica</au><au>Bokan, Neda</au><au>Rakić, Zoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foliation of a dynamically homogeneous neutral manifold</atitle><jtitle>Journal of mathematical physics</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>39</volume><issue>11</issue><spage>6118</spage><epage>6124</epage><pages>6118-6124</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69–79 (1950)]).</abstract><doi>10.1063/1.532617</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1998-11, Vol.39 (11), p.6118-6124 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_532617 |
source | AIP Digital Archive |
title | Foliation of a dynamically homogeneous neutral manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foliation%20of%20a%20dynamically%20homogeneous%20neutral%20manifold&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bla%C5%BEi%C4%87,%20Novica&rft.date=1998-11-01&rft.volume=39&rft.issue=11&rft.spage=6118&rft.epage=6124&rft.pages=6118-6124&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532617&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |