Foliation of a dynamically homogeneous neutral manifold
It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1998-11, Vol.39 (11), p.6118-6124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (−−++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69–79 (1950)]). |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.532617 |