Lattice topological field theory on nonorientable surfaces
The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics 1997-01, Vol.38 (1), p.49-66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Journal of Mathematical Physics |
container_volume | 38 |
creator | Karimipour, V. Mostafazadeh, A. |
description | The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R
[G] of discrete groups G, in particular. |
doi_str_mv | 10.1063/1.531830 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_531830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5c261ce64f8f835cd82ba16d728bf8fe878f585324d26e51b75592955de3c173</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtYq-BPGnS6m5jlzx52U-oCCm-5DJnNjI-OkJFHov3fKSDeCqwuX75zFIeSa0QWjlbhnCyUYCHpCZoxCU9aVglMyo5TzkkuAc3KR0geljIGUM_KwNjl7i0UOu9CHd29NXziPfVfkLYa4L8JQDGEI0eOQTdtjkb6iMxbTJTlzpk949XvnZPO02ixfyvXb8-vycV1aASqXyvKKWaykAwdC2Q54a1jV1Rza8YVQg1OgBJcdr1Cxtlaq4Y1SHQrLajEnN1NtSNnrZH1Gu7VhGNBmLcdYI0dzOxkbQ0oRnd5F_2niXjOqD7NopqdZRno30UOTyT4MR_sd4tHpXef-s396fwBcl2-W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice topological field theory on nonorientable surfaces</title><source>AIP Digital Archive</source><creator>Karimipour, V. ; Mostafazadeh, A.</creator><creatorcontrib>Karimipour, V. ; Mostafazadeh, A.</creatorcontrib><description>The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R
[G] of discrete groups G, in particular.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531830</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; GROUP THEORY ; LATTICE FIELD THEORY ; MATHEMATICAL MANIFOLDS ; PARTITION FUNCTIONS ; PHYSICS ; SURFACES ; TOPOLOGY</subject><ispartof>Journal of Mathematical Physics, 1997-01, Vol.38 (1), p.49-66</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5c261ce64f8f835cd82ba16d728bf8fe878f585324d26e51b75592955de3c173</citedby><cites>FETCH-LOGICAL-c385t-5c261ce64f8f835cd82ba16d728bf8fe878f585324d26e51b75592955de3c173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531830$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1558,27922,27923,76160</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/432494$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karimipour, V.</creatorcontrib><creatorcontrib>Mostafazadeh, A.</creatorcontrib><title>Lattice topological field theory on nonorientable surfaces</title><title>Journal of Mathematical Physics</title><description>The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R
[G] of discrete groups G, in particular.</description><subject>ALGEBRA</subject><subject>GROUP THEORY</subject><subject>LATTICE FIELD THEORY</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>PARTITION FUNCTIONS</subject><subject>PHYSICS</subject><subject>SURFACES</subject><subject>TOPOLOGY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtYq-BPGnS6m5jlzx52U-oCCm-5DJnNjI-OkJFHov3fKSDeCqwuX75zFIeSa0QWjlbhnCyUYCHpCZoxCU9aVglMyo5TzkkuAc3KR0geljIGUM_KwNjl7i0UOu9CHd29NXziPfVfkLYa4L8JQDGEI0eOQTdtjkb6iMxbTJTlzpk949XvnZPO02ixfyvXb8-vycV1aASqXyvKKWaykAwdC2Q54a1jV1Rza8YVQg1OgBJcdr1Cxtlaq4Y1SHQrLajEnN1NtSNnrZH1Gu7VhGNBmLcdYI0dzOxkbQ0oRnd5F_2niXjOqD7NopqdZRno30UOTyT4MR_sd4tHpXef-s396fwBcl2-W</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Karimipour, V.</creator><creator>Mostafazadeh, A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199701</creationdate><title>Lattice topological field theory on nonorientable surfaces</title><author>Karimipour, V. ; Mostafazadeh, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5c261ce64f8f835cd82ba16d728bf8fe878f585324d26e51b75592955de3c173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ALGEBRA</topic><topic>GROUP THEORY</topic><topic>LATTICE FIELD THEORY</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>PARTITION FUNCTIONS</topic><topic>PHYSICS</topic><topic>SURFACES</topic><topic>TOPOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimipour, V.</creatorcontrib><creatorcontrib>Mostafazadeh, A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimipour, V.</au><au>Mostafazadeh, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice topological field theory on nonorientable surfaces</atitle><jtitle>Journal of Mathematical Physics</jtitle><date>1997-01</date><risdate>1997</risdate><volume>38</volume><issue>1</issue><spage>49</spage><epage>66</epage><pages>49-66</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R
[G] of discrete groups G, in particular.</abstract><cop>United States</cop><doi>10.1063/1.531830</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of Mathematical Physics, 1997-01, Vol.38 (1), p.49-66 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_531830 |
source | AIP Digital Archive |
subjects | ALGEBRA GROUP THEORY LATTICE FIELD THEORY MATHEMATICAL MANIFOLDS PARTITION FUNCTIONS PHYSICS SURFACES TOPOLOGY |
title | Lattice topological field theory on nonorientable surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20topological%20field%20theory%20on%20nonorientable%20surfaces&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.au=Karimipour,%20V.&rft.date=1997-01&rft.volume=38&rft.issue=1&rft.spage=49&rft.epage=66&rft.pages=49-66&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531830&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |