Lattice topological field theory on nonorientable surfaces

The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics 1997-01, Vol.38 (1), p.49-66
Hauptverfasser: Karimipour, V., Mostafazadeh, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R [G] of discrete groups G, in particular.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.531830