Quantization of diffeomorphism invariant theories of connections with local degrees of freedom

Quantization of diffeomorphism invariant theories of connections is studied and the quantum diffeomorphism constraint is solved. The space of solutions is equipped with an inner product that is shown to satisfy the physical reality conditions. This provides, in particular, a quantization of the Husa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1995-11, Vol.36 (11), p.6456-6493
Hauptverfasser: Ashtekar, Abhay, Lewandowski, Jerzy, Marolf, Donald, Mourão, José, Thiemann, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantization of diffeomorphism invariant theories of connections is studied and the quantum diffeomorphism constraint is solved. The space of solutions is equipped with an inner product that is shown to satisfy the physical reality conditions. This provides, in particular, a quantization of the Husain–Kuchař model. The main results also pave the way to quantization of other diffeomorphism invariant theories such as general relativity. In the Riemannian case (i.e., signature +++), the approach appears to contain all the necessary ingredients already. In the Lorentzian case, it will have to be combined in an appropriate fashion with a coherent state transform to incorporate complex connections.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.531252