On the stability of collapse in the critical case

Collapsing solutions in the Cauchy problem of the nonlinear Schrödinger equation i ∂ t ψ + ∇2ψ +‖ ψ‖ p ψ = 0 (x∈R d ) are considered in the so‐called critical case pd=4, where d is the spatial dimension. A stability theorem for radial collapse is presented which proves that the formation of the sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1992-03, Vol.33 (3), p.967-973
Hauptverfasser: Laedke, E. W., Blaha, R., Spatschek, K. H., Kuznetsov, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collapsing solutions in the Cauchy problem of the nonlinear Schrödinger equation i ∂ t ψ + ∇2ψ +‖ ψ‖ p ψ = 0 (x∈R d ) are considered in the so‐called critical case pd=4, where d is the spatial dimension. A stability theorem for radial collapse is presented which proves that the formation of the singularity remains ‘‘close’’ to the self‐similar collapsing solution with a spatial profile given by the ground state solitary wave, provided the energy H{ψ}
ISSN:0022-2488
1089-7658
DOI:10.1063/1.529749