On the stability of collapse in the critical case
Collapsing solutions in the Cauchy problem of the nonlinear Schrödinger equation i ∂ t ψ + ∇2ψ +‖ ψ‖ p ψ = 0 (x∈R d ) are considered in the so‐called critical case pd=4, where d is the spatial dimension. A stability theorem for radial collapse is presented which proves that the formation of the sing...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1992-03, Vol.33 (3), p.967-973 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Collapsing solutions in the Cauchy problem of the nonlinear Schrödinger equation i ∂
t
ψ + ∇2ψ +‖ ψ‖
p
ψ = 0 (x∈R
d
) are considered in the so‐called critical case pd=4, where d is the spatial dimension. A stability theorem for radial collapse is presented which proves that the formation of the singularity remains ‘‘close’’ to the self‐similar collapsing solution with a spatial profile given by the ground state solitary wave, provided the energy H{ψ} |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.529749 |