On invariance properties of the wave equation
A complete group classification is given of both the wave equation c 2(x)u x x −u t t =0 (I) and its equivalent system v t =u x , c 2(x)v x =u t (II) when the wave speed c(x)≠const. Equations (I) and (II) admit either a two‐ or four‐parameter group. For the exceptional case, c(x)=(A x+B)2, equation...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1987-02, Vol.28 (2), p.307-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A complete group classification is given of both the wave equation c
2(x)u
x
x
−u
t
t
=0 (I) and its equivalent system v
t
=u
x
, c
2(x)v
x
=u
t
(II) when the wave speed c(x)≠const. Equations (I) and (II) admit either a two‐ or four‐parameter group. For the exceptional case, c(x)=(A
x+B)2, equation (I) admits an infinite group. Equations (I) and (II) do not always admit the same group for a given c(x): The group for (I) can have more parameters or fewer parameters than that for (II); moreover, the groups can be different with the same number of parameters. Separately for (I) and (II), all possible c(x) that admit a four‐parameter group are found explicitly. The corresponding invariant (similarity) solutions are considered. Some of these wave speeds have realistic physical properties: c(x) varies monotonically from one positive constant to another positive constant as x goes from −∞ to +∞. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.527659 |