Operator Racah algebra and Laplace‐type expansions of irreducible spherical tensors

Differential formulas for coefficients in the Laplace‐type series of an arbitrary spherical tensor f L M (r+R) are given in terms of an operator N applied to the radial part φ(r) of f L M (r). Very compact and convenient expressions for N in terms of operator Pochhammer symbols are established. A sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1985-07, Vol.26 (7), p.1540-1546
1. Verfasser: Niukkanen, A. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differential formulas for coefficients in the Laplace‐type series of an arbitrary spherical tensor f L M (r+R) are given in terms of an operator N applied to the radial part φ(r) of f L M (r). Very compact and convenient expressions for N in terms of operator Pochhammer symbols are established. A special representation of the coefficients of the Laplace‐type series, in terms of the operator Gauss function 2 F 1, is given, which, in turn, provides a remarkably short proof of two earlier Sack expansions. More general gradient formulas are introduced and numerous particular cases of the Laplace‐type expansions are considered in detail.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.526914