On the algebra of Dirac bispinor densities: Factorization and inversion theorems

The algebraic system formed by Dirac bispinor densities ρ i ≡ψ̄Γ i ψ is discussed. The inverse problem—given a set of 16 real functions ρ i , which satisfy the bispinor algebra, find the spinor ψ to which they correspond—is solved. An expedient solution to this problem is obtained by introducing a g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1985-07, Vol.26 (7), p.1439-1441
1. Verfasser: Crawford, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The algebraic system formed by Dirac bispinor densities ρ i ≡ψ̄Γ i ψ is discussed. The inverse problem—given a set of 16 real functions ρ i , which satisfy the bispinor algebra, find the spinor ψ to which they correspond—is solved. An expedient solution to this problem is obtained by introducing a general representation of Dirac spinors. It is shown that this form factorizes into the product of two noncommuting projection operators acting on an arbitrary constant spinor.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.526906