Extension of the statistical mechanics of equilibrium to noncommutative constraints
A formula similar to the Gibbs canonical and grand canonical ensembles is proven for the ensemble of maximal entropy among those ensembles of common mean values of possibly n o n c o m m u t i n g operators. This is done over a Hilbert space of finite dimension Δ. A partition matrix Π becomes import...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1976-05, Vol.17 (5), p.753-755 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A formula similar to the Gibbs canonical and grand canonical ensembles is proven for the ensemble of maximal entropy among those ensembles of common mean values of possibly n
o
n
c
o
m
m
u
t
i
n
g operators. This is done over a Hilbert space of finite dimension Δ. A partition matrix Π becomes important; the partition function Z=TrΠ displaces Π in the thermodynamics only in the commutative case. Generalization to Δ infinite is discussed informally. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.522986 |