Relativistic plasma physics in supercritical fields

Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-05, Vol.27 (5)
Hauptverfasser: Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V., Thomas, A. G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the invention of chirped pulse amplification, which was recognized by a Nobel Prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron (e−–e+) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense e−–e+ pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultra-relativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5144449