Vanishing viscosity limit for a system of balance laws with general type initial data arising from 1D Saint-Venant model
We study the vanishing viscosity limit of a non-strictly hyperbolic system of balance laws known as the 1D Saint-Venant model whose solution admits δ-waves. The balance term depends on both the variables x and t and is unbounded in the space variable x unlike the work of Olenik [Usp Math. Nauk. 12(3...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-05, Vol.61 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the vanishing viscosity limit of a non-strictly hyperbolic system of balance laws known as the 1D Saint-Venant model whose solution admits δ-waves. The balance term depends on both the variables x and t and is unbounded in the space variable x unlike the work of Olenik [Usp Math. Nauk. 12(3), 3–73 (1957) (in Russian)]. We also studied the large time behavior when the viscosity parameter is positive. When the balance term depends only on the time variable, we obtained an explicit formula for the solution. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5141052 |