Vanishing viscosity limit for a system of balance laws with general type initial data arising from 1D Saint-Venant model

We study the vanishing viscosity limit of a non-strictly hyperbolic system of balance laws known as the 1D Saint-Venant model whose solution admits δ-waves. The balance term depends on both the variables x and t and is unbounded in the space variable x unlike the work of Olenik [Usp Math. Nauk. 12(3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-05, Vol.61 (5)
Hauptverfasser: Sahoo, Manas R., Sen, Abhrojyoti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the vanishing viscosity limit of a non-strictly hyperbolic system of balance laws known as the 1D Saint-Venant model whose solution admits δ-waves. The balance term depends on both the variables x and t and is unbounded in the space variable x unlike the work of Olenik [Usp Math. Nauk. 12(3), 3–73 (1957) (in Russian)]. We also studied the large time behavior when the viscosity parameter is positive. When the balance term depends only on the time variable, we obtained an explicit formula for the solution.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5141052