Effects of Nb doping on switching-voltage stability of zinc oxide thin films

Nb-doped ZnO (NbxZn1−xO, NZO) thin films with various Nb additions (x = 0, 0.2, 0.5, and 0.8 at. %) were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering. The Nb doping concentration was found to affect the microstructure, the number of oxygen vacancies, and work funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-11, Vol.128 (17)
Hauptverfasser: Li, Cheng-Ying, Lin, Chun-Cheng, Chu, Sheng-Yuan, Lin, Jun-Ting, Huang, Chih-Yu, Hong, Cheng-Shong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nb-doped ZnO (NbxZn1−xO, NZO) thin films with various Nb additions (x = 0, 0.2, 0.5, and 0.8 at. %) were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering. The Nb doping concentration was found to affect the microstructure, the number of oxygen vacancies, and work function of the Pt/NZO/Pt structures. Among the various devices, the film with 0.5 at. % Nb addition showed a better switching-voltage stability [i.e., the optimal coefficient of variation (Cv) for reset (7.02%) and set (2.73%) operations, respectively], a high endurance (∼1000 cycles), and lower reset (0.57 V) and set (1.83 V) voltages due to a larger number of oxygen vacancies and a lower work function. In general, the results show that the present NZO thin films are promising candidates for stable and low power-consumption resistive random access memory applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5140027