Frenkel–Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid organic–inorganic perovskites
For the prototypical two-dimensional hybrid organic–inorganic perovskites (2D HOIPs) (AE4T)PbX4 (X = Cl, Br, and I), we demonstrate that the Frenkel–Holstein Hamiltonian (FHH) can be applied to describe the absorption spectrum arising from the organic component. We first model the spectra using only...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-04, Vol.152 (14), p.144702-144702 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the prototypical two-dimensional hybrid organic–inorganic perovskites (2D HOIPs) (AE4T)PbX4 (X = Cl, Br, and I), we demonstrate that the Frenkel–Holstein Hamiltonian (FHH) can be applied to describe the absorption spectrum arising from the organic component. We first model the spectra using only the four nearest neighbor couplings between translationally inequivalent molecules in the organic herringbone lattice as fitting parameters in the FHH. We next use linear-response time-dependent density functional theory (LR-TDDFT) to calculate molecular transition densities, from which extended excitonic couplings are evaluated based on the atomic positions within the 2D HOIPs. We find that both approaches reproduce the experimentally observed spectra, including changes in their shape and peak positions. The spectral changes are correlated with a decrease in excitonic coupling from X = Cl to X = I. Importantly, the LR-TDDFT-based approach with extended excitonic couplings not only gives better agreement with the experimental absorption line shape than the approach using a restricted set of fitted parameters but also allows us to relate the changes in excitonic coupling to the underlying geometry. We accordingly find that the decrease in excitonic coupling from X = Cl to Br to I is due to an increase in molecular separation, which in turn can be related to the increasing Pb–X bond length from Cl to I. Our research opens up a potential pathway to predicting optoelectronic properties of new 2D HOIPs from ab initio calculations and to gain insight into structural relations from 2D HOIP absorption spectra. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5139044 |