A long-lived capacitively shunted flux qubit embedded in a 3D cavity
We report the experimental realization of a 3D capacitively shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy relaxation times in the range of 60–90 μs and a Hahn-echo coherence time of about 80 μs, which can be further improved...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-12, Vol.115 (26) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the experimental realization of a 3D capacitively shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy relaxation times in the range of 60–90 μs and a Hahn-echo coherence time of about 80 μs, which can be further improved by dynamical decoupling. Qubit energy relaxation can be attributed to quasiparticle tunneling and unwanted two-level-system defects, while qubit dephasing is caused by flux noise away from the optimal point. Our results show that 3D c-shunt flux qubits demonstrate improved performance over other types of flux qubits, which is advantageous for applications such as quantum magnetometry and spin sensing. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5136262 |