Variable single-axis magnetic-field generator using permanent magnets
We present a design for producing precisely adjustable and alternating single-axis magnetic fields based on nested Halbach dipole pairs consisting of permanent magnets only. Our design allows for three dimensional optical and mechanical access to a region with strong adjustable dipolar fields, is co...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-11, Vol.9 (11), p.115312-115312-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a design for producing precisely adjustable and alternating single-axis magnetic fields based on nested Halbach dipole pairs consisting of permanent magnets only. Our design allows for three dimensional optical and mechanical access to a region with strong adjustable dipolar fields, is compatible with systems operating under vacuum, and does not effectively dissipate heat under normal operational conditions. We present a theoretical analysis of the properties and capabilities of our design and construct a proof-of-concept prototype. Using our prototype, we demonstrate fields of up to several kilogauss with field homogeneities of better than 5%, which are harmonically modulated at frequencies of ∼1 Hz with a power consumption of approximately 1.2 W. Moreover, we discuss how our design can be modified to generate adjustable quadrupolar magnetic fields with gradients as large as 95 kG/m in a region of optical and mechanical access. Our design is scalable and can be constructed to be suitable not only for table-top experiments, as in the case of polarimetric and magnetometric setups that require strong alternating magnetic fields, but also for large scale applications such as generators. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5130896 |