Study of the compression behavior and high-pressure strength of a-Si3N4 combining experimental and theoretical methods
The compression behavior and high-pressure strength of alpha silicon nitride (α-Si3N4) at pressures of up to 60 GPa are studied using synchrotron radiation powder diffraction, complemented with first-principles calculations. Compression experiments reveal that a-Si3N4 remains stable under the highes...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-11, Vol.9 (11), p.115311-115311-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The compression behavior and high-pressure strength of alpha silicon nitride (α-Si3N4) at pressures of up to 60 GPa are studied using synchrotron radiation powder diffraction, complemented with first-principles calculations. Compression experiments reveal that a-Si3N4 remains stable under the highest pressure and ambient temperature and has a bulk modulus of K0 = 256.3(±4) GPa, with a pressure derivative of K′0 = 5.6. However, the bulk modulus of experiment is higher than that of calculation (232.5 GPa). The correlation between strength and pressure is confirmed by diffraction peak broadening data. A transition from elastic deformation to plastic deformation of α-Si3N4 at 20 GPa is observed, indicating that α-Si3N4 begins to yield, with yield strength reaching 21 GPa at pressures of up to 20 GPa. A similar phenomenon is observed for MgO, WB3, and c-BC2N. Additionally, theoretical calculations are basically consistent with diffraction experimental results regarding structural stability and mechanical properties. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5128064 |