Hard X-ray nanoprobe and time-resolved XEOL to observe increasing luminescence of ZnO and GaN epitaxial structures
Hard X-ray excited optical luminescence (XEOL) with a nanofocused beam provides both excellent spatial resolution and high enough peak power density, which makes XEOL mapping and luminescence dynamics study achievable. We present here the time and X-ray intensity dependence of the near-band-edge (NB...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-10, Vol.115 (17) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hard X-ray excited optical luminescence (XEOL) with a nanofocused beam provides both excellent spatial resolution and high enough peak power density, which makes XEOL mapping and luminescence dynamics study achievable. We present here the time and X-ray intensity dependence of the near-band-edge (NBE) luminescence from the nonpolar a-plane MgZnO/ZnO multiple quantum wells (MQWs): the emission intensity increases more than 10 times after high X-ray irradiation. Different from the well-known NBE emission lifetime of ZnO (less than 1 ns), the long decay time gradually decreases from 130 ns to 35 ns with the increasing X-ray irradiation time. We attribute the observed changes in NBE luminescence to the excitation of the Mg-related energy state by the high energy X-ray nanobeam. This suggestion was further confirmed in the XEOL spectra of the Mg-doped and Si-doped c-plane GaN epi-films. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5123271 |