Strain engineering on the metal-insulator transition of VO2/TiO2 epitaxial films dependent on the strain state of vanadium dimers
In this letter, a series of vanadium dioxide (VO2) epitaxial films were deliberately deposited on TiO2 substrates with different orientations [(001), (110), and (101)], in an attempt to gain insights into the strained VO2 epitaxial film. We found in-plane [100] and [1-10] directions, obviously aniso...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-12, Vol.115 (25) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, a series of vanadium dioxide (VO2) epitaxial films were deliberately deposited on TiO2 substrates with different orientations [(001), (110), and (101)], in an attempt to gain insights into the strained VO2 epitaxial film. We found in-plane [100] and [1-10] directions, obviously anisotropic metal-insulator transition (MIT) in (110)-oriented VO2 films. In combination with synchrotron radiation high-resolution x-ray diffraction characterizations, electronic transport data reveal that the critical temperature of MIT depends on the strain state of the dimeric vanadium atomic chain along the c axis of the rutile phase. The anisotropy of MIT is closely related to the orientation of the VO2 films, which is caused by the varied orientation configuration of V-V atomic chain dimerization in the films. Soft x-ray absorption spectroscopy results further indicate that this anisotropy may be driven by the directional hybridization of O 2p and V 3d orbitals with respect to the orientation of VO2 thin films. The polarization-dependent V L-edge and O K-edge XAS data suggest that the elongation of the apical V-O bond length increases the p-d orbital overlap; thus, the energy level of the d// orbital is raised relative to that of the π* orbital. These anisotropic MIT behaviors will help us to understand how the strain engineering depends on the strain state of vanadium dimers in VO2 films. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5121876 |