Energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling

In this study, energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling is investigated. For this, three micro orifices with different geometrical dimensions are fabricated. The hydraulic diameter of the micro orifices are 66.6 μm, 75.2 μm, and 80 μm, while their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2019-10, Vol.9 (10), p.105012-105012-11
Hauptverfasser: Gevari, Moein Talebian, Ghorbani, Morteza, Svagan, Anna J., Grishenkov, Dmitry, Kosar, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling is investigated. For this, three micro orifices with different geometrical dimensions are fabricated. The hydraulic diameter of the micro orifices are 66.6 μm, 75.2 μm, and 80 μm, while their length is the same (2000μm). Two different working fluids, namely water and Perfluoropentane droplet-water suspension, are utilized for cavitating flows in the fabricated micro orifices. The flow patterns at different upstream pressures are recorded using the high-speed camera system, and the experimental results are analyzed and compared. Thereafter, energy harvesting perspectives of cavitating flows are considered. The released heat from collapsing bubbles and the subsequent temperature rise on the end wall of the microchannel, which can be used as the source for the power generation, is calculated over time. Finally, a miniature energy harvesting system with cavitation system and thermoelectric generator coupling is presented. The maximum power corresponding to two different thermoelectric generators is estimated for with both working fluids and is compared with the required power to run miniature daily used electronics components.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5115336