Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework

This paper focuses on the time-resolved turbulent flow reconstruction from discrete point measurements and non-time-resolved (non-TR) particle image velocimetry (PIV) measurements using an artificial intelligence framework based on long short-term memory (LSTM). To this end, an LSTM-based proper ort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2019-07, Vol.31 (7)
Hauptverfasser: Deng, Zhiwen, Chen, Yujia, Liu, Yingzheng, Kim, Kyung Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the time-resolved turbulent flow reconstruction from discrete point measurements and non-time-resolved (non-TR) particle image velocimetry (PIV) measurements using an artificial intelligence framework based on long short-term memory (LSTM). To this end, an LSTM-based proper orthogonal decomposition (POD) model is proposed to establish the relationship between velocity signals and time-varying POD coefficients obtained from non-TR-PIV measurements. An inverted flag flow at Re = 6200 was experimentally measured using TR-PIV at a sampling rate of 2000 Hz for the construction of training and testing datasets and for validation. Two different time-step configurations were employed to investigate the robustness and learning ability of the LSTM-based POD model: a single-time-step structure and a multi-time-step structure. The results demonstrate that the LSTM-based POD model has great potential for time-series reconstruction since it can successfully recover the temporal revolution of POD coefficients with remarkable accuracy, even in high-order POD modes. The time-resolved flow fields can be reconstructed well using coefficients obtained from the proposed model. In addition, a relative error reconstruction analysis was conducted to compare the performance of different time-step configurations further, and the results demonstrated that the POD model with multi-time-step structure provided better reconstruction of the flow fields.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.5111558