1D Schrödinger operators with Coulomb-like potentials

We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-08, Vol.60 (8)
1. Verfasser: Golovaty, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Golovaty, Yuriy
description We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends on a way of regularization of the Coulomb potential and the existence of zero-energy resonances for δ′-like potential. All possible limits are described in terms of point interactions at the origin. As a consequence of the convergence results, different kinds of L∞(R)-approximations to the even and odd Coulomb potentials, both penetrable and impenetrable in the limit, are constructed.
doi_str_mv 10.1063/1.5099309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5099309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272026882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8b9599fff264297db0bea9a9c92d8563f892a02e02f5141dc9db4c281a2ca3183</originalsourceid><addsrcrecordid>eNqd0MtKAzEYBeAgCtbqwjcYcKUw9c-fuSRLqfUCBRfqOmQyiU1tJ2OSKr6YL-CLOdKCe1dn83EOHEJOKUwoVOySTkoQgoHYIyMKXOR1VfJ9MgJAzLHg_JAcxbgEoJQXxYhU9Dp71Ivw_dW67sWEzPcmqORDzD5cWmRTv1n5dZOv3KvJep9Ml5xaxWNyYIcwJ7sck-eb2dP0Lp8_3N5Pr-a5ZlinnDeiFMJai1WBom4baIwSSmiBLS8rZrlABWgAbUkL2mrRNoVGThVqxShnY3K27e2Df9uYmOTSb0I3TErEGgErznFQ51ulg48xGCv74NYqfEoK8vcWSeXulsFebG3ULqnkfPc__O7DH5R9a9kPNcdwGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272026882</pqid></control><display><type>article</type><title>1D Schrödinger operators with Coulomb-like potentials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Golovaty, Yuriy</creator><creatorcontrib>Golovaty, Yuriy</creatorcontrib><description>We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends on a way of regularization of the Coulomb potential and the existence of zero-energy resonances for δ′-like potential. All possible limits are described in terms of point interactions at the origin. As a consequence of the convergence results, different kinds of L∞(R)-approximations to the even and odd Coulomb potentials, both penetrable and impenetrable in the limit, are constructed.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5099309</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Convergence ; Coulomb potential ; Operators (mathematics) ; Physics ; Pseudopotentials ; Regularization ; Topology</subject><ispartof>Journal of mathematical physics, 2019-08, Vol.60 (8)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8b9599fff264297db0bea9a9c92d8563f892a02e02f5141dc9db4c281a2ca3183</citedby><cites>FETCH-LOGICAL-c327t-8b9599fff264297db0bea9a9c92d8563f892a02e02f5141dc9db4c281a2ca3183</cites><orcidid>0000-0002-1758-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5099309$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Golovaty, Yuriy</creatorcontrib><title>1D Schrödinger operators with Coulomb-like potentials</title><title>Journal of mathematical physics</title><description>We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends on a way of regularization of the Coulomb potential and the existence of zero-energy resonances for δ′-like potential. All possible limits are described in terms of point interactions at the origin. As a consequence of the convergence results, different kinds of L∞(R)-approximations to the even and odd Coulomb potentials, both penetrable and impenetrable in the limit, are constructed.</description><subject>Convergence</subject><subject>Coulomb potential</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Pseudopotentials</subject><subject>Regularization</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEYBeAgCtbqwjcYcKUw9c-fuSRLqfUCBRfqOmQyiU1tJ2OSKr6YL-CLOdKCe1dn83EOHEJOKUwoVOySTkoQgoHYIyMKXOR1VfJ9MgJAzLHg_JAcxbgEoJQXxYhU9Dp71Ivw_dW67sWEzPcmqORDzD5cWmRTv1n5dZOv3KvJep9Ml5xaxWNyYIcwJ7sck-eb2dP0Lp8_3N5Pr-a5ZlinnDeiFMJai1WBom4baIwSSmiBLS8rZrlABWgAbUkL2mrRNoVGThVqxShnY3K27e2Df9uYmOTSb0I3TErEGgErznFQ51ulg48xGCv74NYqfEoK8vcWSeXulsFebG3ULqnkfPc__O7DH5R9a9kPNcdwGQ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Golovaty, Yuriy</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1758-0115</orcidid></search><sort><creationdate>201908</creationdate><title>1D Schrödinger operators with Coulomb-like potentials</title><author>Golovaty, Yuriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8b9599fff264297db0bea9a9c92d8563f892a02e02f5141dc9db4c281a2ca3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convergence</topic><topic>Coulomb potential</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Pseudopotentials</topic><topic>Regularization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovaty, Yuriy</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovaty, Yuriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D Schrödinger operators with Coulomb-like potentials</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-08</date><risdate>2019</risdate><volume>60</volume><issue>8</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends on a way of regularization of the Coulomb potential and the existence of zero-energy resonances for δ′-like potential. All possible limits are described in terms of point interactions at the origin. As a consequence of the convergence results, different kinds of L∞(R)-approximations to the even and odd Coulomb potentials, both penetrable and impenetrable in the limit, are constructed.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5099309</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1758-0115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-08, Vol.60 (8)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5099309
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convergence
Coulomb potential
Operators (mathematics)
Physics
Pseudopotentials
Regularization
Topology
title 1D Schrödinger operators with Coulomb-like potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D%20Schr%C3%B6dinger%20operators%20with%20Coulomb-like%20potentials&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Golovaty,%20Yuriy&rft.date=2019-08&rft.volume=60&rft.issue=8&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5099309&rft_dat=%3Cproquest_cross%3E2272026882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272026882&rft_id=info:pmid/&rfr_iscdi=true