1D Schrödinger operators with Coulomb-like potentials

We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-08, Vol.60 (8)
1. Verfasser: Golovaty, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convergence of 1D Schrödinger operators Hε with the potentials which are regularizations of a class of pseudopotentials having, in particular, the form αδ′(x) + βδ(x) + γ/|x| or αδ′(x) + βδ(x) + γ/x. The limit behavior of Hε in the norm resolvent topology, as ε → 0, essentially depends on a way of regularization of the Coulomb potential and the existence of zero-energy resonances for δ′-like potential. All possible limits are described in terms of point interactions at the origin. As a consequence of the convergence results, different kinds of L∞(R)-approximations to the even and odd Coulomb potentials, both penetrable and impenetrable in the limit, are constructed.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5099309