Band alignment determination of bulk h-BN and graphene/h-BN laminates using photoelectron emission microscopy
Because graphene stacked on hexagonal boron nitride (h-BN) exhibits high electron mobility, it is expected to be applied to next-generation high-speed transistors and electron emitters. To further improve the performance of graphene/h-BN devices, it is necessary to determine the band alignment of gr...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-04, Vol.125 (14) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because graphene stacked on hexagonal boron nitride (h-BN) exhibits high electron mobility, it is expected to be applied to next-generation high-speed transistors and electron emitters. To further improve the performance of graphene/h-BN devices, it is necessary to determine the band alignment of graphene/h-BN laminates. However, because mechanically peeled h-BN single crystals transferred onto Si substrates are small, pinpoint observation of h-BN with ordinary photoelectron spectroscopy is difficult. In this study, the electric structure of a graphene/h-BN laminate was identified by photoemission electron microscopy and local measurements of valence band and secondary electron spectra using micro-ultraviolet photoelectron spectroscopy were performed. From these measurements, we determined the band alignment of a graphene/h-BN laminate with a crystal size of a few tens of micrometers. The work function and electron affinity measured by photoelectron spectroscopy of single-crystal h-BN were 4.6 and −0.5 eV, respectively. Laminating graphene on h-BN caused the Fermi level of h-BN to rise 0.85 eV above that of nonlaminated h-BN. In addition, it was found that graphene on h-BN displayed weak n-type conductivity. The results obtained in this research are expected to be widely applied in the field of electronics such as electron emitters using h-BN with negative electron affinity. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5093430 |