Memristor crossbar array for binarized neural networks
Memristor crossbar arrays were fabricated based on a Ti/HfO2/Ti stack that exhibited electroforming-free behavior and low device variability in a 10 x 10 array size. The binary states of high-resistance-state and low-resistance-state in the bipolar memristor device were used for the synaptic weight...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-04, Vol.9 (4), p.045131-045131-5 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memristor crossbar arrays were fabricated based on a Ti/HfO2/Ti stack that exhibited electroforming-free behavior and low device variability in a 10 x 10 array size. The binary states of high-resistance-state and low-resistance-state in the bipolar memristor device were used for the synaptic weight representation of a binarized neural network. The electroforming-free memristor was confirmed as being suitable as a binary synaptic device because of its higher device yield, lower variability, and less severe malfunction (for example, hard break-down) than the electroformed memristors based on a Ti/HfO2/Pt structure. The feasibly working binarized neural network adopting the electroforming-free binary memristors was demonstrated through simulation. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5092177 |